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From examination of EKXL code run output and of analytic studies of particle

density distributions, •2 a picture emerges of the behavior of ions and electrons in flow

through simple 1. Polywelltm systems.

This shows that the region within the momentum-limited core is net positively

charged, and always develops a virtual anode. If the ion c1[jent, for given electron drive

current, is allowed to become sufficiently large, this virtual anode increases in height above

the potential well minimum and the core radius broadens accordingly. This broadening

follows the simple algorithm

r R(E ito 0.5

where E to is the stable transverse ion energy at the outer boundary after core, edge, and
mantle collision processes, and Eia is the potential well depth at the center of the core (i.e.

electron maximum injection energy minus virtual anode height). This broadening leads to

reduced core density, varying as (1/rC), for given drive conditions.

-C

However, since the ions approaching the core now must "climb" the increasing

anode "hill", they will be slowed down, and their radial motion will decrease with energy

given up to the central virtual anode potential. Thus, their convergence will be more rapid

than (the usual) geometric inverse-square (1/r 2 ) dependence that characterizes flow

throughout most of the device, and the ion density will increase more rapidly than

otherwise expected. This increased densification tends to offset the geometric reduction in

By "simple" systems is meant potential wells whose shape is describable by a simple power

law expression of the form <r> m; with m as m = 3 for the Polywelltm/SCIF systems of interest here



density due to increased core radius. The net result is that fusion reaction rates vary only

slowly with increasing anode height up to about half the well depth. Beyond this point the

reaction rates steadily decrease due to decreasing fusion reaction cross-sections with the

decreasing ion kinetic energy. This feature of ion flow is discussed in more detail in a

forthcoming EMC2 Technical Note.3

In the region outside the core the plasma is near-neutral (though still slightly

positive out to the well minimum, at r = rw) and the ion and electron density follow each

other very closely (i.e. within < 1E-5 of local density, for all densities of interest),

decreasing about as the inverse-square of the increasing radius. The variation from

neutrality is such that the net charge density varies approximately linearly with radius,

decreasing to zero at rw. Beyond rw the system is nearly neutral, but increasingly slightly

negative, out to a radius rf at which the total energy of the average electron is found to be

in well potential energy and transverse kinetic motion (i.e. where the average electron has

no radial kinetic energy). This has been called the "stagnation radius" for electron flow;1

in principle, in the absence of ions, the average electron would never reach a radius smaller

than rr This radius is just the mean convergence radius of electrons with transverse energy

spread * Eeperp and injection energy E0 , and is given by

eprp

r f= R rEeer] 1 (2)

For example, if the electrons are given transverse energy at the outer boundary of Aae•t• ,or
E =0.6 Eo, then the value of <rf> = (rf/R) will be <rf> = 0.775. For a diffuse; NTub I

o/wad t•e0"
reflection distribution of electrons from the outer boundary region, Eer E 3 and! ;s,'s

<rr>= 0.578.
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The gross density of both species continues to drop approximately as the inverse
square from rf out to a radius r = rk, at which both the ion and electron density begin to

increase rapidly as the ions lose energy to the potential well and the electrons pile up to

form the main body of this potential well. This region from rk < r < R is dominated by

electron motion. Outside rk the electron density increases much faster with radius than

does the ion density, and the system becomes highly net neg ve thus ensuring the

establishment of the deep negative well required for ion acceleration.

Ion motion dominates the flow within r < r. Between rf < r < rk the transition

changes from ion-driven flow (at r < rd) to electron-driven flow (at r > rk). The density

at rk is found from the distributions derived by Krall2 to be

n,',(r) = n.(3/2) I k J (3)

for a simple power-law well with m = 3, where the potential distribution is given by

e0(r) = e~j[1--r/R)3] = %Eo[.-(r/R)3 ], defining the well depth factor o. = eo/Eo.

This work2 gave ion density distributions in three regions across the system. These

were in the "core" r < rC, the "mantle" rc < r < rk, and the outer region r > rk. It also

showed that the ion density within a very small radial distance in from the "edge" at r = R.

would have to rise slightly in order to preserve flow and current continuity within the

electron-driven potential well. The "true" monotonic potential well thus starts at a radial

position r slightly less than R; rk << r <z R. From this body of work it is possible topP

obtain the properties of the flow at the several critical radii just discussed.
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Consider the "edge" region, and suppose that the potential well shape is a simple

(m) power-law here, so that ion and electron energies would be given by

Ei(r) = (1/2)miv12 = Eo(1 - <r>m) (4a)

Ee(r) = (1/2)mjv 2 
- Eo(<r> m) (4b)

where <r> = (r/R). The radius <rm> at which the ion density will be a maximum is that

at which the potential well has fallen from r = R to a depth equal to the initial spread in

energy of the ion input, Eio, here assumed to be uniformly distributed from transverse to

radial. The convergence radius is determined by this spread as <rc> = (Eio/E,)0.5, so that

the "edge" radius is given from the ion eq. (4a) as

= - <r • >

which is very small for all convergence ratios and power law exponents of interest. For

example, for m = 3 and <re> = 1E-2, eq. (6) gives <rm> = 1 - 3.3E-5.

Now consider the radius <r > at which electron and ion velocities would be equal,

assuming the validity of the radial flow model used here. This is readily found from eqs.

(4) to be simply

1Im.m<rv >- 
(6)

For ions of m = 3 and mass 2m p (e.g. D) this gives <rv> = 0.0650. Of course, in any real

system the existence of finite transverse momenta and their conservation will render this

particular numerical result invalid, but it is indicative of the nature of the ion and electron
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flow in the system.

In considerable contrast is the radius <r > at which ion and electron momenta are
P

equal. Again, from eqs. (4) this is found to be

<rp> = 1- (1/m) (7)

which yields <r > = 1 - 9.07E-5 for D ions. Note that this is very near to the value forP

the radius of maximum ion density, <rM> above. Finally, solving eqs. (4) for the radius

<r,> at which ion and electron energies are equal gives
a.

<r > = 0.794 (8)

The critical radius <rk> at which the ion density reaches a minimum is found by

differentiating the equation (given previously ) for ion density in the region between <rM >

and <re>. This yields the result that

<rk> = 0.830 (10)

not far different from the value for <r > just obtained.

The ion densities expected from this simple model at these critical radii are

summarized below in terms of Krall's edge density2 nR, and the core density nc.
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ION DENSITY IN TERMS OF n IN TERMS OF n

At core edge n = (1.5/<rc>)nR n = nC

for actual density distribution in system

At radius of min- n. = (3.327<r >)nR I = (2.218<rc> 2)nc

imum density <rk>,

2W<rk> = 0.830 for (1/r ) density distribution at r < rk

n = (2.180<rc>)nR n. = (1.453<rC> 2)nc

At radius of max-
imum density <rm>, U. = (1. 3 1)nR n. = (0.8 7 3 <rC>)nc

<r m> = (1--<rc> 2/3)

At system boundary n = nR n = (0. 6 67<rC>)n€

These formulae are of some interest, as they illustrate the general nature of

variation of ion density across the device when it is operating with a stable, filled potential

well of simple shape. In particular it is interesting to note that the core ion density is

higher than the density at injection by a factor of the order of (R/re), and higher than the

minimum density in the system by (R/re)2. The electron density follows the ion density

closely for all radii r < rk. Beyond rk the electron density increases markedly, becoming

comparable to the core density at the system boundary.

In actual fact, this simple model becomes progressively more in error as the outer

boundary is approached, because the B field - which determines the potential shape - does

not follow a simple power law formula. Rather it varies about as
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B = B2< r > m(11)

This '"rollover" field shape leads to a flat B field gradient at the system edge, which

strongly affects the density distribution in this region. The effect is to flatten the electron

distribution considerably from its sharply rising character under the simple model used

here. This means that the ion density will also not rise as rapidly with increasing outer

radius position, and that all calculations whose answers are driven by the high edge

densities of the simple model are suspect and probably in error. Within r < rk both models

are fairly close and the distributions given by the simple model here may be taken as

reasonable approximations to real effects. It is only in the outermost regions of the system

that significant complexities arise; and these will not be resolved short of good experiments

that show particle and field distributions.
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